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SUMMARY
A flow-condition-based interpolation finite element scheme is sented for use of triangular grids

in the solution of the incompressible Navier—Stokes cgg®®qgs. The method provides spatially isotropic
discretizations for low and high Reynolds number flo Qs example solutions are given to illustrate
the capabilities of the procedure. Copyright © 20 ey & Sons, Ltd.
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1. 1 ODUCTION

While much research has bee nded on the numerical solution of the Navier—Stokes
general fluid flow proble
References [1-4] and th rgferences therein.
In our research we
tion (FCBI) solutio
and finite element

oach, which is a hybrid approach between the usual control volume
thodSNdrawing on the best features of these techniques. The specific aim
in the FCBI sol roach is to reach procedures that are stable, accurate and efficient for
any Reynolds n w, even when rather coarse meshes are used for solution. The aims
of our develgppmen ve been presented in detail in References [5—7].

In engine ctice, we endeavor to use as coarse meshes as possible for a required
accuracyy HeWfe, we require a numerical solution procedure that is stable and gives

nce to: K.-J. Bathe, Department of Mechanical Engineering, Massachusetts Institute of Technology,
etts Avenue, Cambridge, MA 02139-4307, U.S.A.

kib@mit.edu

hno@tana.mech.keio.ac.jp

ontgtt/grant sponsor: Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan

Received 7 March 2005
Revised 10 May 2005
Copyright © 2005 John Wiley & Sons, Ltd. Accepted 10 May 2005
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reasonable solutions even when using rather coarse meshes for high Reynolds num . :
sol
solvcNthe

This numerical scheme should not require any special meshing directed to obtaint
tion and not require the tuning of numerical parameters. Also, the iterations

nonlinear algebraic equations corresponding to a fluid mesh should converge@§fast. Ghce a
numerical solution—maybe even sometimes only of rough but still reasonable a —has
been reached, the analyst can refine the mesh in a targeted manner and ch ropriately,

the mathematical modelling assumptions used (for example, regarding turbulga€e modelling).

The benefit of being able to use rather coarse meshes can be particularly progounced in the
analysis of fluid flow structural interactions, because in such analyses, @gtuallypa rather coarse
fluid flow mesh may well yield sufficient accuracy for the tractio t cture [8]. Here
then, in addition to obtaining sufficient accuracy in the fluid ediction, the iterations
used to solve the combined nonlinear algebraic equations corg8po to the fluid flow and
structural meshes should converge fast, and in many cases gdmegfNeyton—Raphson procedure
is best used with consistent Jacobian matrices [9].

The requirements that we have set for our developme, ithin®he FCBI solution approach
are [5-8,10]:

e Stability of the numerical solution for low and high Ref#olds number flows, using coarse
meshes. Reasonable accuracy of the solutigsf

e As the mesh is refined, stability is pres8
optimally increased.

d the accuracy of the simulation is

e The analyst does not use any numerj ters to tune the fluid flow solution.
e The nonlinear algebraic equations can olved efficiently in iterations using a consistent
Jacobian matrix, say in the Newt hsOh iterations (which requires that interpolations

of the variables are used).

In our earlier contributions we _presentd§ FCBI schemes for quadrilateral grids, or general

quadrilateral finite element m —7]. In practice, however, the use of triangular grids,
and in three-dimensional anal hedral element meshes, is very desirable. Namely, any
domain can be meshed wi al elements and for complicated geometries, tetrahedral
element discretizations i ctpired meshes generally need to be used.

The objective in thi
grids for two-dime

solutions of Navier—Stokes fluid flow problems. We first present
and Specifically the flow-condition-based interpolations used, and then
ions to illustrate the capacity of the scheme. These solutions include
egular grids, with coarse and fine meshes, and for low and higher
s of well-chosen test problems. We concentrate in this paper on the
oposed discretization scheme, based on the objectives given above, and
tions of some test problems. Although we consider in this study only steady-
the proposed method can also be applied to time-dependent problems as is
effiod based on quadrilateral grids [8]. Of course, a full evaluation of the scheme
include a study of its numerical efficiency when the scheme is embedded in a
te CFD computer code. Such study should then comprise the accuracy of the scheme,
and thé®number of iterations used and the numerical effort per iteration, when compared
uging other CFD discretization methods, in the solution of complex and perhaps even
trial problems. However, such comprehensive evaluation is beyond the scope of this

er.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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2. A NEW FCBI METHOD FOR THE SOLUTION OF NAVIERSTOKE@:

EQUATIONS

In this section, we present an FCBI method using triangular grids for the anal)!;s of i’com-

pressible fluid flows. We first give the mathematical model considered and the nt the
procedure based on the MINI element used [9].

2.1. Governing equations and finite element formulation

We consider a two-dimensional steady-state fluid flow problem govesig th€ incompressible

Navier—Stokes equations. We assume that the problem is well-pg
and P. The non-dimensional governing equations in conservatjye
Find the velocity v(x)€ V' and pressure p(x)€ P such that

the” Hilbert spaces V'
are:

9

V-v=0, x (D
V-(w—-1)=0, xe€ 2)
subject to the boundary conditions
A B Sv (3)
$ X € Sf (4)

where Q€ R? is a domain with the bouWary S:S‘UUSf(SvﬂSf:(D), t is the stress tensor
defined as

1
(Vs —plt oAV + (Vv)'} (5)
with the identity tensogpl th€ Reynolds number Re, v* is the prescribed velocity on the
scrib

boundary S, f* is th traction on the boundary Sy, and n is the unit normal vector
to the boundary.

For the finite gfement solution, we use a Petrov—Galerkin variational formulation with sub-
spaces Uy, V), and W), V, and P, and Q; of P of the problem in Equations (1)—(4). The

formulation for th erical solution is:
Find ue UhVnd pEP, s7ch that for all we W), and g € QOy:
Q. WY - (uy —/r(u,p))dfz:o )
Q
& gV -udQ =0 (7)
Q

trial functions in U, and P, are the usual functions of finite element interpolations for
@/ ocity and pressure, respectively. These are selected to satisfy the inf-sup condition of

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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incompressible analysis [9]. An important point is that the trial functions in V), are
from the functions in U, and are defined using the flow conditions in order to sta
advection term. The weight functions in the spaces W, and Q, are step fungffons,
enforce the local conservation of momentum and mass, respectively.

2.2. Using the MINI element

To establish an FCBI scheme for triangular grids that can be used to solve§problems with
complex geometries, we develop a new method that possesses the basfgingredjents mentioned
above, i.e. interpolations to satisfy the inf-sup condition, the use offfig onditions in the
trial functions and step functions as weight functions. The proce ing the MINI element
is detailed in this section.

Figure 1 shows a MINI element in which the velocity igf#defifled dt four nodes, the local
node numbers 1-4, while the pressure is defined at three esgthe local node numbers
1-3, in order to satisfy the inf-sup condition. With th of W€p weight functions around
nodes, the control volumes in the spaces W), and Q, a ed as shown in Figures 2(a)
and (b), respectively. The flux is calculated with the intSHgplated values at the centre of the
sides of the control volumes. The velocity u an pressure p are obtained with the trial
functions in U, and P, given in Tables I and

(8)
)

A

K¢

C o—> ¢
1 2
Figure 1. A MINI element.
Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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Figure 2. Control volumes and flux calcul
and (b) segme

Table 1. Trial functions T

, and nodal co-ordinates.

Trial function 14 n
H=1-¢—n—¢./3 1 0 0
hy=¢E— ¢ o8 2 1 0
hy=n— 3 0 1
hy = ¢, 4 1/3 1/3
le al functions in P, and nodal co-ordinates.
nction i n
1—¢—p 1 0 0
2 1 0
3 0 1

PN

3¢
l3n

in the three domains shown in Figure 1.

be

Copyright © 2005 John Wiley & Sons, Ltd.

[3(1 —¢—n) in w
n w; (10)

in w3
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In order to reach a stable solution scheme, the velocity v in the advection term
polated using the flow conditions, see Figure 3. As in the original FCBI method
conditions are evaluated on the sides of the element with an analytical solutio the
dimensional advection—diffusion equation. However, we consider here differentfjinterp@lation
functions for the velocity components v and v, that are measured, respectively, el and
perpendicular to each side of the three domains w;, w, and ws;. The fl ition-based
interpolation is applied to the parallel component, while linear interpolatio employed to
the perpendicular component. This improves the accuracy of the solution {§ee Remark 1
below). The trial functions for the parallel component h;.’” in vy givgm in Table III,
and the functions for both components are attached to the sa dalNfelocities used in

Equation (8) as follows:

—_ v A
v = hiy vy = hivy

(1)

Uy :h,ﬁvil:h;‘vil

/Ay

1 (€,0) 2
Fi ¥ Values used in the construction of the trial functions in V.
@ Trial functions in ¥, for the velocity component parallel to the element sides.
[O)] (6] w3
0 o (1-36)" (=301 = x)
K, (B&+3n—2)(1 —x2) 0 (1= 3n)x
S (BE+3n —2w* (1 =381 —x" 0
: 3(1—¢&—n) 3¢ 3n

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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with Q
xlzz% x23:€Reg3’77”—1 x31:w
ef — 17 ehess 1 % 1
e . S & % el En

“a—1 MT3Eva—2 MU

(12)

Re‘fz :ReV12 . AX]Q, Re§3 =R€V23 . AX23, Re§1 =R€V31 . AX31

Vo=1Vi+v), Vu=1i(va+v), Vu=1(vs+v) V

Axp =X, — X, AXp3=X3—Xp, AX3 =X; —X3

where Ref,, Re$; and Res, are the element Reynolds numbegd onythMgides 1-2, 2-3 and 3-1,
respectively, and x; =(x;, y;) for i=1,2,3 are the nodal c atg® The trial functions for
the perpendicular component AY, in V), are obtained bygmgla x23, x3! and x'? with 7,
1 —n, and &g, respectively, and they are the same as t igns used in Equation (8). Note
that the bubble function ¢, is not changed as shown in

The proposed trial functions have the following properti

e Stability is obtained through the introductj Bc flow-condition interpolation.

e No artificial parameters are employed.

e Compatibility between adjacent domains and w; for i,j=1,2,3) is satisfied.

e The requirement 4! =1 is satisfied.

e An interpolated value at a specific pointNgges not depend on the node numbering.

e The functions are always positiv

e The functions are invariant to a roffon of the Cartesian co-ordinate system.

e As the element Reynolds numbers b§come small, the trial functions in V), approach the
trial functions in Uj,. (Thj oved by substituting x'? 2 &,, x> =y,, x*' 21 -y, into

S D
the functions listed in T4 %

e taken counterclockwise in Table III, which corresponds to

Although the flow conditj
the direction in Figure 3, Myjgfof gBurse also possible to consider the flow conditions clockwise
due to the following g€lation’

xZ _xl2’ x32 =1 _x23’ xl3 =1 _x31 (13)

Hence, geometrially, ti trial functions in ¥}, correspond to a linear interpolation between the
values at the cenfygj d the point on the side whose position is determined by the natural
co-ordinate @) as shown in Figure 3. The points (&,,1,), (0,1,) and (&,,0) correspond

to the inters s of the sides and the lines that connect the centroid and the interpolating
positio he values at these points are calculated according to the analytical solution of
the a diffusion equation. This can be described by the following equations:

(G Ve Ut Ve
& = fE oty (O D )

{(fa B 6)2 + (7111 B ’7)2}1/2

R (TR o T

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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= (3437 = 2)(1 = x )y + (3¢ 4 3 — 2P vy + 3(1 — & — )vy @:

1y _ 1\2v1)2
v = {(é{é i)(ntin;)zi?/z} o + (1= xoy} < )

{&+ (np —n)*}'"?
o ;E
= (1 =380 oy + (1= 38)(1 — ¥ Yoy + 3éuy Q\\v/ (13)

PO (Gl D Ul Vi A
G-y

(& — &7 + )12
PGt

=(1-3n)(1 —xlz)vlu + (1 — 311)x12

{1 —xlz)vln +x"v,

vy + 317 (16)

oflents of the velocities v!, v? and v at
bed using the unit vectors as follows:

where v|, v} and v} are the interpolated paralle

vj=v-ep (17)
with

i Axy 31§ 2X3) n_ Axp

e = e , ef=— 18
T TR ax T A (1%
Remark 1
In the original FCBI techffique pr@Posed for quadrilateral elements [6], the flow-condition-
t

based interpolations we ed using the flow conditions along opposing element sides,
with an interpolation gver t ement. The two sets of opposing element sides were used.
"
be C

However, in the fo n of triangular elements, the flow conditions along each of three
element sides ne sidered in an equal manner to reach an isotropic element. This
isotropy and in fadditiof a rational scheme for good predictive capability are achieved by
decomposing theSgeloci#y vector into the parallel and perpendicular components to each ele-
ment side i ifferent trial functions for the components (see Section 3.2 for results
obtained wh ared to using the same flow-condition-based interpolations for parallel
and pe icllar velocity components). Notice that the element Reynolds number defined in
Equag n be rewritten in the following form:

Refz :Rei’u . AX]Z

:Reﬁ||12||Ax12||
v+ 0
:ReMHAqu (19)

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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Since the parallel components of velocities to the side 1-2, which are defined at thegho 1

and 2, are used, the advected velocity should also be parallel to the side. Hence, in th e
proposed in this paper, the perpendicular component of velocity is interpolated lgftarly aSwhe
element Reynolds number is considered to be infinitesimal due to Axy; -e;p; =0 wherB e

is the unit vector perpendicular to the side 1-2.

Remark 2
In the Cartesian co-ordinate systems, the velocity in the domain ®; and its §omponents are

written as follows: V

v = uled 4ol e
=vle, +ole, (20)
oy = 0 (ef s + vl (e
=(3¢+3n =D = *H{(ef )} + (1 {(e2)x}?]vax
+(3&+3n = 2)I(1 —x)(ef) (1 = na)(eP)x(el)yvay
+ (3 + 31— )1 (e ) FNIINGD )} 1ose
+(3E+ 30 = )P (e )0y + (e (e, Jus,
+3(1 = &= n)vgy

= 01 V2y + 0oV, 4 03 U3y Wp0ax U3y + sy Vs 21)
v, =vj(ef)y +
—Get 3@ YAy + (1= 1) E () e
T & (1 =)0 + (1= 1)), Plon,
36 1+ 3 - DL )y + 1), Jon,

Cﬁ# 37— 2)P{(e] )y} + na{ (€)Y 1osy

YM(I ey,
Q 01y U2y + 02y U2y + 35 U3x + OC4yv3y + OC5yv4y (22)
& e2f:ex><ey><eﬁ3
(eﬁ3 e = eﬁ3 -ey, (eﬁ3 )y = elzf -e, (23)

(D) =¢e? -e, (63_3))/ =e? - €y

Z Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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Yh!=1, ie. Yo =Xo;, =1 in Equations (21) and (22), is still satisfied since
and (ef’), = —(e?):. In addition, it is readily confirmed from Equations (21)

vy and v} are independent of the directions of ef® and €%’ as long as
are, respectively, parallel and perpendicular to the side 2-3. The same h the other

components.

In this section, the performance of the new FCBI method igg€valmate® using some test prob-
lems. First, we apply the proposed scheme to the solution adpfection—diffusion problem
for which the exact analytical solution exists. Then we g0 avier—Stokes flow prob-
lems: a lid-driven flow in a square cavity and in a tria 4@, . The full Newton—Raphson
method is used to solve the nonlinear equations with the W@nvergence criteria max(R,)<10~¢
and max(R,)<107¢ where R,=||Av|/|v], R,=|Agl/|p|- To reach the solutions for higher
Reynolds numbers, we use the converged sol the lower Reynolds number case as
initial condition.

3. NUMERICAL EXAMPLES

3.1. Solution of an advection—diffusion t problem between parallel plates

We include the solution of this probl
analytical solution. Figure 4 shows the §
with the boundary conditions and the

m in oflgr to compare our calculated results with an
1 model of the temperature problem considered

5 (i A

(a) 0 1 (b)
0(x,—0.5)=0

Figure 4. The flow problem between parallel plates and the mesh used: (a) problem
definition; and (b) regular triangular mesh.
C

opyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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08

—8— Exact solution ’ —8— Exact solution

02 —e— FCBI method 02 | —&— FCBI method

0.0
0.0 0.2 04

(a)

Figure 5. Comparison of tem alues on the centre line: (a) Pe=10;
(b) Pe=N0f; and (c) Pe=1000.

(see also Reference [7]). When velocity is prescribed in the x direction over the whole
domain, the exact steady-gfategsolulon for the temperature 60 is

COoST atbx ax
AN -E50-o 2

— P A P +4n2), b=1(Ped Pe+4n?) (25)

where Pe is et number.
Figu 6 show the comparison of temperature values on the centre line and on

ough the channel for Pe=10,100 and 1000. Although the calculated values
ghtly from the exact data near the right boundary for Pe=100 and 1000, good
ith the exact solutions can be seen in all cases.

with

. Solution of driven flow in a square cavity

capability of the scheme for Navier—Stokes flow problems is next assessed by solving the
l1d-driven flow problem in a square cavity. This problem is widely used as a benchmark to

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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0.50 0.50 L‘_V

025 | 025 |-
> 0.00 + > 0.00 +
0.25 + 025
-0.50 -0.50
0.00 0.30 0.60 0.90 0.00 0.30 : 0.90
(a) X (b) X
0.50
4
025 |
> 0.00
025 b
-0.50
0.00 0.30 60 0.90
(©
—a8— jon ——e—— FCBI method
Figure 6. Comparis of {®mperature profiles on vertical lines:
(a) P, b) Pe=100; and (c) Pe=1000.
evaluate developed nu sgiemes. We compare our numerical results with the solutions
of Ghia et al. [11] are Yegarded as accurate.

Figures 7(a) and {b) s the geometry of the square cavity with the co-ordinate system

tively. The no-sip boufldary condition is imposed on the left, lower and right boundaries,
while a unit velo i€ prescribed on the upper boundary including the corners. In addition,
Zero pressu cribed at the lower left corner. Three types of regular meshes and an
irregular mesRre used in the analysis for the fluid flow up to the Reynolds number 10 000.
Figure )—(®) show the regular meshes including 40 x 40 x 2 elements, which are named
Mes

1, respggtively, and Figure 8(d) shows the irregular mesh named Mesh 4 that consists

2

0 X2 elements. In Meshes 1-3, the grid points are distributed finer near the boundary

@ to the following equations: (
\
e@/N)i=1) _q N
= <i<—
x(7) @ -1 L 1\1\2 —l—l) (26)

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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HTL]
+\
2
>
(XrL1>YrLn)
+
Xy
BR3YBR3) \
(XpL2»YBL2) (Xpro:YBR)
(XBL1>YBL XpR1>YBR1) Z
\a g
>
* 7
* ALY
I(_ Bl Hgg; —>| (‘T Vg3
Hgg, >
HBLI >
(a) Hgg,
Figure 7. Square-cavity flow problem: (a) profjgm ition (—1<r,5s<1); and (b) nomen-
clature (take rence [11]).
\ ( \
\ 2N )( 1 N 4)
€
x(i)y= 1- L —+1<i<N+ 27

where N is the number of € on a side, L is the length of the side, i is the node
number and y represents t€ parafgfer for unequal division. The value of y is fixed at 2 for
the three meshes.

First, the fluid flow gor 000 is calculated using Mesh 1, and the obtained velocity
profiles along the c ines are shown in Figure 9. For the display of the results, we use
the r,s co-ordinategystems€long the centre lines (—1<r,s<1) defined in Figure 7(a). As an
experiment, we the solution obtained if the same flow-condition-based interpolations
are used for thoyparalll and perpendicular components of velocity on the element sides.
eynolds number a finer mesh is necessary to reach agreement with the
[11] (see below), the proposed approach of using different interpolations

results with the three meshes for Re=1000 are close to each other in velocity
pg the centre lines and agree reasonably well with those of Ghia er al [11].

gure 12 shows the comparison of our results with those of Ghia ef al [11] for the cases
=5000 and 10000. In order to obtain more accurate results for these high Reynolds number

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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S O

Figure 3. egf 1; (b) Mesh 2; (c) Mesh 3; and (d) Mesh 4.

flows, we use a@esh Pased on the element distribution of Mesh 1 but with the number of
elements in 60 x 160 x 2. The velocity profiles along the centre lines are in good
reported by Ghia et al. [11].

— (0v,/0y)], and the contours are drawn at intervals of Aw=1.0 for a range
<3.0. As the Reynolds number increases, the vorticity in the primary vortex

whereas’the vorticity changes significantly near the boundary.

Agcomparison of some characteristic values with the results of Ghia et al [11] for
10000 is listed in Table IV using the nomenclature in Figure 7(b). The vortex cen-
tres and the representative lengths corresponding to the velocity profile in Figure 12(b) are in

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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o) Ghiaetal. [11]
....... same interpolations

different interpolations

0.5

Figure 9. Comparison of vertical and horizontal velo®igy profiles along the centre lines obtained with
two different types o ons for Re=10000.

0.5, r
(e} Ghiaetal. [11]
& ~ FCBI Mesh 1
FCBI Mesh 2
FCBI Mesh 3
O OC ‘ |
205 / H o
Q— °
-1
-1 -0.5 0 0.5 1

T

e 10. Comparison of vertical and horizontal velocity profiles along the centre lines obtained with
three different meshes for Re = 1000.
Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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05 F
O Ghiaetal. [11]
o)
— FCBI Mesh 4
%) 0 AN
o
[e) o
0.5 -
_ 1
1 0.5 0 0.5 1
r
(@ (b)
Figure 11. Solutions in Mesh 4 for Re =1000: (a)_vi tribution; and (b) comparison of vertical
and horizontal velocity profles the centre lines.
1 L 1
0.5 L 0.5
o
O Ghiaetal.[11] Q o Ghiaetal[l1]
—— FCBI 160x160x2 FCBI 160x160x2
» 0 L @ 0
o
o)
fo) o)
0.5 L 0.5
O,
o)

-1 — -1
-1 5 0 0.5 1 -1 0.5 0 0.5 1
r (b) r
Figure Comparison of vertical and horizontal velocity profiles along the centre lines: (a) solution
K for Re =5000; and (b) solution for Re =10 000.

odpagreement with those reported by Ghia et al [11] in which a 257 x 257 mesh is used.
that the smallest secondary vortex in the bottom right corner is captured with fewer
e

ments per side than those in the mesh used by Ghia et al.
Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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e = ™ = =
=y
T T \ \ =
/ e / =

Y =N
T NS
//// / ‘f \ \‘\‘\ |

i
.“'//////’ ,

!f/ff(m

Figu . Streamline patterns: (a) solution for Re =1000; (b) solution for Re = 5000;
2 and (c) solution for Re=10000.
&ut n of driven flow in a triangular cavity
: AZ a seCond fluid flow example, we consider the driven flow in an equilateral triangular cavity.
R

r fhis problem solution, triangular grids are quite natural to use. Although triangular-cavity
ofs have been studied by some researchers [12,13], the flows considered were of rather small
Q ynolds numbers. Here we solve small and large Reynolds number flows; the maximum

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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i ure;4. Vorticity contours: (a) solution for Re =1000; (b) solution for Re = 5000;
and (c) solution for Re=10000.

—_~

C

eymylds number is 10 times larger than that reported by Ribbens et al [12] in the same
analyticdl model.
Figures 15(a) and (b) show the geometry of the triangular cavity with the co-ordinate
m and the nomenclature for the vortices. As in the square-cavity flow problem, the no-
slfp boundary condition is imposed on the left and right boundaries, while a unit velocity

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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Table IV. Comparison of characteristic values for Re =10 000.

Parameter

FCBI

(xc, yc)
(L1, YTLL)
(XBL1, VBL1)
(xBL2, VBL2)
(XBR1, VBR1)
(xBR2, VBR2)
(XBR3, VBR3)
Hrr

VL1

Hpr1

VL1

Haro

VL2

Har1

VBr1

Hpgr2

Var2

Hprs

VBr3

(0.5127,0.5291)
(0.0682,0.9116)
(0.0530,0.1732)
(0.0305,0.0372)
(0.7777,0.0581)
(0.9326,0.0763)
(0.9958,0.0043)
0.1537
0.3241
0.3455
0.2857
0.0685
0.0896
0.3730
0.4455
0.1699
0.1576
0.0089
0.009

Q.

Ghia et al. [11]
(0.5117,0.5333)
(0.0703,0.9141)
(0.0586, 0.
(0.0156,0.0
(0.7656,0.05
(0.9336,0.062
(0.9@)
.1

3203
0.3438

2891

.0352
0.0441
0.3906
0.4492
0.1706
0.1367
0.0039
0.0039

(XcarYes)

(a)

Figure 15_Tri

which

(b)

(Xc2:¥e)

(X¢s:Yes)

+
(XesYer)
+

(X¢3:Yc3)

lar-cavity flow problem: (a) problem definition (—1<r,s<1); and (b) nomenclature.

on the top boundary. At the bottom corner, the pressure is fixed at zero. The

ion is conducted using two types of regular meshes named Mesh 1 and Mesh 2, for
e element patterns are, respectively, shown in Figures 16(a) and (b), and consist of

[ 491) and /%/2 elements, where / is the number of elements along the top wall. In this
sis, 44310 elements (/ =210) for Mesh 1 and 45000 elements (/ =300) for Mesh 2 are
used up to the Reynolds number 5000.

Copyright © 2005 John Wiley & Sons, Ltd.
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S
&
¥

(a) (b)
Figure 16. (a) Mesh 1; and (b) Meglf’ 2.

0.5
FCBI Mesh 1 FCBI Mesh 1
....... FCBI Mesh 2 -------FCBIMesh2
s 0 \\ ‘ \
0.5 ; 0.5 H
1 -1
1 0.5 0 1 -1 -0.5 0 0.5 1
(a) (b) r

FCBI Mesh 1

------- FCBI Mesh 2

Qyo =

igure 17. Vertical and horizontal velocity profiles along the centre line (x=0) and the
horizontal line (y=—1) obtained with two different meshes: (a) solution for Re=100;
(b) solution for Re =1500; and (c) solution for Re =5000.
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Table V. Velocity values in the x direction along the centre line (x=0) in Mesh 1

Re

Grid pt. no. y 100 200 500 1000 2000 350 00
211 0.0000 1.00000 1.00000 1.00000 1.00000 1.00000 0000 1.00000
207 —0.0571 0.81766 0.78999 0.73838 0.69877 0.66698 0.65324
206 —0.0714 0.77171 0.73771 0.67965 0.64323 0.62494 93 0.63440
205 —0.0857 0.72676 0.68813 0.62977 0.60396 0.60359 0.08767 0.62950
204 —0.1000 0.68320 0.64201 0.58927 0.57817 0.59 0.1342 0.62599
180 —0.4429 0.16395 0.23983 0.28014 0.29736 0 VZO% 0.32664
150 —0.8714 —0.16653 —0.10758 —0.05682 —0.03738 @ 9 .02100 —0.01853
128 —1.1857 —0.29476 —0.33718 —0.26938 —0.25167 44 —024211 —0.24228
119 —1.3143 —-0.27349 —-0.37775 —0.35935 —0.33325 % —0.32540 —0.32601
106 —1.5000 —0.18897 —0.29791 —0.45972 —0.462 —0.43947 —0.44103
100 —1.5857 —0.14445 —0.22425 —0.41095 —0.49468 —0.49248
96 —1.6429 —0.11669 —0.17469 —0.33494 — —0.53940 —0.53784
94 —1.6714 —0.10376 —0.15138 —0.28993 — . —0.54890 —0.55647
93 —1.6857 —0.09758 —0.14028 —0.26698 —0.50133 —0.54482 —0.55919
75 —1.9429 —-0.02046 —0.01231 —0.00365 0.05945 0.07701
74 —1.9571 —-0.01798 —0.00880 0.00234 0.05981 0.07563
63 —2.1143  —0.00032 0.01304 0.04331 0.01392 0.01073
58 —2.1857 0.00312 0.01543 0.03606 0.00303 0.00208
57 —2.2000 0.00355 0.01553 0.03324 0.00153 0.00054
50 —2.3000 0.00481 0.01371 0.01252  —0.00605 —0.00928
1 —3.0000 0.00000 0.00000 0.00000 0.00000 0.00000

Table VI. Velocity values in t direct®on along the horizontal line (y=—1.0) in Mesh 2.
Re

Grid pt. no. 500 1000 2000 3500 5000
201 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
195 —0.20538 —0.33354 —0.45622 —0.55547 —0.60292 —0.61850
193 —0.25872 —0.40554 —0.51876 —0.57957 —0.58979 —0.58657
190 —0.32360 —0.47331 —0.54549 —0.54712 —0.52833 —0.52041
186 —0.38138 —0.49887 —0.50832 —0.47690 —0.46718 —0.47034
180 —0.41260 —0.45508 —0.42435 —0.41400 —0.42254 —0.42970
175 —0.40093 —0.39707 —0.37604 —0.38205 —0.39068 —0.39628
101 0.10458 0.09033 0.05136 0.04008 0.03387 0.03207 0.03184
0.18995 0.26513 0.28742 0.26286 0.25367 0.25191 0.25307
0.18981 0.26566 0.29968 0.27459 0.26479 0.26294 0.26407
0.17807 0.23822 0.35731 0.37510 0.35809 0.35375 0.35480
0.16183 0.20468 0.32956 0.40430 0.41568 0.41038 0.40969
0.14537 0.17678 0.28510 0.38345 0.43522 0.44616 0.44862
0.13501 0.16088 0.25700 0.35794 0.42878 0.45412 0.46214
0.12723 0.14946 0.23645 0.33563 0.41633 0.45197 0.46503
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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(

Figure 18. Streagigne pa s in Mesh 1: (a) solution for Re=100; (b) solution for
Re =500; and (c) solution for Re = 5000.

Figure 17 sho@velocity profiles in the x direction along the centre line and the y
direction al orizontal line at y=—1 in the cavity obtained with Meshes 1 and 2 for
the caseg Re 100,500 and 5000. For the display of the results, we use in this figure the

ateystems (—1<r,s<1) defined in Figure 15(a). As in the square-cavity flow

arly linear variation of the velocity and the kinks near y =0 on the centre line

on the horizontal line are observed for the case Re=>5000. Since the solutions in

1 and 2 are almost the same for these Reynolds numbers, the obtained results are not
sitiv€ to the meshes used.

Agpdemonstrated in Section 3.2, the present scheme provides not only stable results even

distorted grids but also accurate results, with the accuracy of course dependent on the
eness of the mesh. Hence, we deem it useful to give more details of our results and we

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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Figure 19. Vortj contOWrs in Mesh 1: (a) solution for Re=100; (b) solution for
e=500; and (c) solution for Re =5000.

list some calcul§ed values in Tables V and VI, in which local maxima and minima are

underlined. i the results for Meshes 1 and 2 are virtually the same, we show in
Tables V an pectively, the x-velocity along the centre line obtained from Mesh 1 and
the y-velgei ong the horizontal line at y =—1 from Mesh 2. Showing the results this way,

ta points than if the results were employed from one mesh only.

and 19 show the streamline patterns and vorticity contours, respectively, obtained

1 for Re=100,500 and 5000. In Figure 18, we see that some vortices appear

the primary vortex, and their number increases as the Reynolds number increases.

The vorticity contours are drawn at intervals of Aw=0.5 for a range of —5.0<w<5.0. As

fl the square-cavity flow, the vorticity in the primary vortex is approximately constant for
= 5000, while the gradient of vorticity becomes large between the vortices and near the

ometric boundary.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849-875
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%Figure 20. Variation of the vortex centre positions in Mesh 1: (a) (Xc1,yc1); (b) (Xc2,yc2);
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The locations of the centres of the vortices according to the nomenclature in Figyfe 1&b)
are listed in Table VII. Among them, the locations in the primary vortex can be C ar
with the results of Ribbens ez al. [12]. Although the present results agree wel with thfse
of Ribbens et al. [12] for the cases Re =100 and 200, we obtained somewhat {differerlf data
when Re=500. To study our results further we plot the calculated centre poStgga#of the
primary vortex as a function of the Reynolds number in Figure 20(a). Thi ition changes
smoothly and according to the development of the flow field; hence our res for Re =500
are deemed accurate.

In Figure 20(a), as in the square-cavity flow problem, the centr thegprimary vortex
moves toward the geometric centre of the cavity as the Reynold b creases. On the
contrary, the secondary eddies under the primary vortex first ap ound the cavity centre
and then move right or left with the increase in the Reynol r as shown in Figures
20(b), (c) and (e). This figure also implies that more eddi pear near the stagnant
corner at higher Reynolds numbers; but a finer mesh ne ed to capture those tiny
eddies.

4. CONCL
In this paper we presented an FCBI scheme 4fgr ith triangular grids in the solution of
the Navier—Stokes equations at low and high olts numbers. The emphasis in the FCBI

procedure is on stability and reasonable aqyracy cven when rather coarse meshes are used.
In the case of triangular discretizationg, we alS@, want that property to hold when completely
unstructured meshes are employed. ifficult to achieve, but a reasonable research
aim. The scheme presented in the paperN§ spatially isotropic (which is important for general
applications) and showed good gtability ®ind accuracy in the test problems solved. Some

triangular-cavity problem.
The scheme was prese
given procedure can als
further studies of the luding the numerical effectiveness, for two-dimensional so-
lutions are needed. studies might also result in improvements of the procedure, and for
three-dimensional galutionS®the scheme needs to be still implemented, thoroughly tested and
analysed. Finally#’ a maghematical analysis of the given scheme would be very valuable.
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