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SUMMARY

A �ow-condition-based interpolation �nite element scheme is presented for use of triangular grids
in the solution of the incompressible Navier–Stokes equations. The method provides spatially isotropic
discretizations for low and high Reynolds number �ows. Various example solutions are given to illustrate
the capabilities of the procedure. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

While much research has been expended on the numerical solution of the Navier–Stokes
equations and certain computational schemes are in wide use, the more e�ective solution of
general �uid �ow problems at high Reynolds numbers still represents a major challenge, see
References [1–4] and the many references therein.
In our research we have focused on the development of the �ow-condition-based interpola-

tion (FCBI) solution approach, which is a hybrid approach between the usual control volume
and �nite element methods, drawing on the best features of these techniques. The speci�c aim
in the FCBI solution approach is to reach procedures that are stable, accurate and e�cient for
any Reynolds number �ow, even when rather coarse meshes are used for solution. The aims
of our developments have been presented in detail in References [5–7].
In engineering practice, we endeavor to use as coarse meshes as possible for a required

accuracy. Hence, we require a numerical solution procedure that is stable and gives
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850 H. KOHNO AND K.-J. BATHE

reasonable solutions even when using rather coarse meshes for high Reynolds number �ows.
This numerical scheme should not require any special meshing directed to obtain a solu-
tion and not require the tuning of numerical parameters. Also, the iterations to solve the
nonlinear algebraic equations corresponding to a �uid mesh should converge fast. Once a
numerical solution—maybe even sometimes only of rough but still reasonable accuracy—has
been reached, the analyst can re�ne the mesh in a targeted manner and change, appropriately,
the mathematical modelling assumptions used (for example, regarding turbulence modelling).
The bene�t of being able to use rather coarse meshes can be particularly pronounced in the

analysis of �uid �ow structural interactions, because in such analyses, actually, a rather coarse
�uid �ow mesh may well yield su�cient accuracy for the tractions on the structure [8]. Here
then, in addition to obtaining su�cient accuracy in the �uid �ow prediction, the iterations
used to solve the combined nonlinear algebraic equations corresponding to the �uid �ow and
structural meshes should converge fast, and in many cases some Newton–Raphson procedure
is best used with consistent Jacobian matrices [9].
The requirements that we have set for our developments within the FCBI solution approach

are [5–8, 10]:

• Stability of the numerical solution for low and high Reynolds number �ows, using coarse
meshes. Reasonable accuracy of the solution.

• As the mesh is re�ned, stability is preserved and the accuracy of the simulation is
optimally increased.

• The analyst does not use any numerical parameters to tune the �uid �ow solution.
• The nonlinear algebraic equations can be solved e�ciently in iterations using a consistent
Jacobian matrix, say in the Newton–Raphson iterations (which requires that interpolations
of the variables are used).

In our earlier contributions we presented FCBI schemes for quadrilateral grids, or general
quadrilateral �nite element meshes [5–7]. In practice, however, the use of triangular grids,
and in three-dimensional analyses tetrahedral element meshes, is very desirable. Namely, any
domain can be meshed with tetrahedral elements and for complicated geometries, tetrahedral
element discretizations in unstructured meshes generally need to be used.
The objective in this paper is to present developments of an FCBI scheme using triangular

grids for two-dimensional solutions of Navier–Stokes �uid �ow problems. We �rst present
the FCBI procedure and speci�cally the �ow-condition-based interpolations used, and then
give demonstrative solutions to illustrate the capacity of the scheme. These solutions include
the use of regular and irregular grids, with coarse and �ne meshes, and for low and higher
Reynolds number �ows of well-chosen test problems. We concentrate in this paper on the
formulation of the proposed discretization scheme, based on the objectives given above, and
the detailed solutions of some test problems. Although we consider in this study only steady-
state conditions, the proposed method can also be applied to time-dependent problems as is
the FCBI method based on quadrilateral grids [8]. Of course, a full evaluation of the scheme
should also include a study of its numerical e�ciency when the scheme is embedded in a
complete CFD computer code. Such study should then comprise the accuracy of the scheme,
and the number of iterations used and the numerical e�ort per iteration, when compared
to using other CFD discretization methods, in the solution of complex and perhaps even
industrial problems. However, such comprehensive evaluation is beyond the scope of this
paper.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849–875
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FLOW-CONDITION-BASED INTERPOLATION FINITE ELEMENT PROCEDURE 851

2. A NEW FCBI METHOD FOR THE SOLUTION OF NAVIER–STOKES
EQUATIONS

In this section, we present an FCBI method using triangular grids for the analysis of incom-
pressible �uid �ows. We �rst give the mathematical model considered and then present the
procedure based on the MINI element used [9].

2.1. Governing equations and �nite element formulation

We consider a two-dimensional steady-state �uid �ow problem governed by the incompressible
Navier–Stokes equations. We assume that the problem is well-posed in the Hilbert spaces V
and P. The non-dimensional governing equations in conservative form are:
Find the velocity v(x)∈V and pressure p(x)∈P such that

∇ · v=0; x∈� (1)

∇ · (vv − �) = 0; x∈� (2)

subject to the boundary conditions

v= vs; x∈ �Sv (3)

� · n= f s; x∈ Sf (4)

where �∈�2 is a domain with the boundary S= �Sv ∪ Sf(Sv ∩ Sf = ∅), � is the stress tensor
de�ned as

�= �(v; p)=−pI+ 1
Re

{∇v+ (∇v)T} (5)

with the identity tensor I and the Reynolds number Re; vs is the prescribed velocity on the
boundary �Sv, f s is the prescribed traction on the boundary Sf, and n is the unit normal vector
to the boundary.
For the �nite element solution, we use a Petrov–Galerkin variational formulation with sub-

spaces Uh, Vh and Wh of V , and Ph and Qh of P of the problem in Equations (1)–(4). The
formulation for the numerical solution is:
Find u∈Uh, v∈Vh and p∈Ph such that for all w∈Wh and q∈Qh:

∫
�
w∇ · (uv − �(u; p)) d�= 0 (6)

∫
�
q∇ · u d�= 0 (7)

The trial functions in Uh and Ph are the usual functions of �nite element interpolations for
velocity and pressure, respectively. These are selected to satisfy the inf–sup condition of

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849–875
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852 H. KOHNO AND K.-J. BATHE

incompressible analysis [9]. An important point is that the trial functions in Vh are di�erent
from the functions in Uh and are de�ned using the �ow conditions in order to stabilize the
advection term. The weight functions in the spaces Wh and Qh are step functions, which
enforce the local conservation of momentum and mass, respectively.

2.2. Using the MINI element

To establish an FCBI scheme for triangular grids that can be used to solve problems with
complex geometries, we develop a new method that possesses the basic ingredients mentioned
above, i.e. interpolations to satisfy the inf–sup condition, the use of the �ow conditions in the
trial functions and step functions as weight functions. The procedure using the MINI element
is detailed in this section.
Figure 1 shows a MINI element in which the velocity is de�ned at four nodes, the local

node numbers 1–4, while the pressure is de�ned at three nodes, the local node numbers
1–3, in order to satisfy the inf–sup condition. With the use of step weight functions around
nodes, the control volumes in the spaces Wh and Qh are considered as shown in Figures 2(a)
and (b), respectively. The �ux is calculated with the interpolated values at the centre of the
sides of the control volumes. The velocity u and the pressure p are obtained with the trial
functions in Uh and Ph given in Tables I and II:

u= hui vi (8)

p= hpi pi (9)

1

3 

�1

�3

4

2

�2

�

�

Figure 1. A MINI element.
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Figure 2. Control volumes and �ux calculation points: (a) segment in the space Wh;
and (b) segment in the space Qh.

Table I. Trial functions in Uh and nodal co-ordinates.

Trial function i � �

hu1 = 1− �− �− �e=3 1 0 0
hu2 = �− �e=3 2 1 0
hu3 = �− �e=3 3 0 1
hu4 =�e 4 1=3 1=3

Table II. Trial functions in Ph and nodal co-ordinates.

Trial function i � �

hp1 = 1− �− � 1 0 0
hp2 = � 2 1 0
hp3 = � 3 0 1

where vi and pi are the nodal velocity and pressure variables, respectively. The bubble function
�e is de�ned as

�e =

⎧⎪⎪⎨
⎪⎪⎩

3(1− �− �) in !1

3� in !2

3� in !3

(10)

in the three domains shown in Figure 1.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849–875
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854 H. KOHNO AND K.-J. BATHE

In order to reach a stable solution scheme, the velocity v in the advection term is inter-
polated using the �ow conditions, see Figure 3. As in the original FCBI method, the �ow
conditions are evaluated on the sides of the element with an analytical solution of the one-
dimensional advection–di�usion equation. However, we consider here di�erent interpolation
functions for the velocity components v‖ and v⊥ that are measured, respectively, parallel and
perpendicular to each side of the three domains !1, !2 and !3. The �ow-condition-based
interpolation is applied to the parallel component, while linear interpolation is employed to
the perpendicular component. This improves the accuracy of the solution (see Remark 1
below). The trial functions for the parallel component hvi‖ in Vh are given in Table III,
and the functions for both components are attached to the same nodal velocities used in
Equation (8) as follows:

v‖ = hvi‖vi‖= hvi vi‖

v⊥ = hvi⊥vi⊥= hui vi⊥
(11)

3 

�1

4

�3

�2

(�,�)(�,�)

(�
a
,�

a
)

(�,�)

1 2

b
,�0

(�
b
,0)

�

�

Figure 3. Values used in the construction of the trial functions in Vh.

Table III. Trial functions in Vh for the velocity component parallel to the element sides.

!1 !2 !3

hv1‖ 0 (1− 3�)x31 (1− 3�)(1− x12)
hv2‖ (3�+ 3�− 2)(1− x23) 0 (1− 3�)x12

hv3‖ (3�+ 3�− 2)x23 (1− 3�)(1− x31) 0
hv4‖ 3(1− �− �) 3� 3�

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849–875
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with

x12 =
eRe

e
12�b − 1

eRee12 − 1
; x23 =

eRe
e
23�a − 1

eRee23 − 1
; x31 =

eRe
e
31(1−�b) − 1
eRee31 − 1

�b =
−�+ �
3�− 1

; �a=
�+ 2�− 1
3�+ 3�− 2

; �b=
�− �
3�− 1

Ree12 = Re�v12 ·�x12; Ree23 =Re�v23 ·�x23; Ree31 =Re�v31 ·�x31

�v12 = 1
2(v1 + v2); �v23 = 1

2(v2 + v3); �v31 = 1
2(v3 + v1)

�x12 = x2 − x1; �x23 =x3 − x2; �x31 =x1 − x3

(12)

where Ree12, Re
e
23 and Ree31 are the element Reynolds numbers on the sides 1-2, 2-3 and 3-1,

respectively, and xi =(xi; yi) for i=1; 2; 3 are the nodal co-ordinates. The trial functions for
the perpendicular component hvi⊥ in Vh are obtained by replacing x23, x31 and x12 with �a,
1−�b and �b, respectively, and they are the same as the functions used in Equation (8). Note
that the bubble function �e is not changed as shown in Table III.
The proposed trial functions have the following properties:

• Stability is obtained through the introduction of the �ow-condition interpolation.
• No arti�cial parameters are employed.
• Compatibility between adjacent domains (i.e. !i and !j for i; j=1; 2; 3) is satis�ed.
• The requirement 	hvi =1 is satis�ed.
• An interpolated value at a speci�c point does not depend on the node numbering.
• The functions are always positive.
• The functions are invariant to a rotation of the Cartesian co-ordinate system.
• As the element Reynolds numbers become small, the trial functions in Vh approach the
trial functions in Uh. (This is proved by substituting x12 ∼= �b, x23 ∼= �a, x31 ∼=1− �b into
the functions listed in Table III.)

Although the �ow conditions are taken counterclockwise in Table III, which corresponds to
the direction in Figure 3, it is of course also possible to consider the �ow conditions clockwise
due to the following relation:

x21 = 1− x12; x32 = 1− x23; x13 = 1− x31 (13)

Hence, geometrically, the trial functions in Vh correspond to a linear interpolation between the
values at the centroid and the point on the side whose position is determined by the natural
co-ordinate (�; �) as shown in Figure 3. The points (�a; �a), (0; �b) and (�b; 0) correspond
to the intersections of the sides and the lines that connect the centroid and the interpolating
positions, and the values at these points are calculated according to the analytical solution of
the advection–di�usion equation. This can be described by the following equations:

v1‖ =
{(�− 1

3 )
2 + (�− 1

3 )
2}1=2

{(�a − 1
3 )

2 + (�a − 1
3 )

2}1=2 {(1− x23)v2‖ + x23v3‖}

+
{(�a − �)2 + (�a − �)2}1=2
{(�a − 1

3 )
2 + (�a − 1

3 )
2}1=2 v4‖

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849–875
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856 H. KOHNO AND K.-J. BATHE

= (3�+ 3�− 2)(1− x23)v2‖ + (3�+ 3�− 2)x23v3‖ + 3(1− �− �)v4‖ (14)

v2‖ =
{(�− 1

3 )
2 + (�− 1

3 )
2}1=2

{ 1
9 + (�b − 1

3 )
2}1=2 {x31v1‖ + (1− x31)v3‖}

+
{�2 + (�b − �)2}1=2
{ 1
9 + (�b − 1

3 )
2}1=2 v4‖

= (1− 3�)x31v1‖ + (1− 3�)(1− x31)v3‖ + 3�v4‖ (15)

v3‖ =
{(�− 1

3 )
2 + (�− 1

3 )
2}1=2

{(�b − 1
3 )

2 + 1
9}1=2

{(1− x12)v1‖ + x12v2‖}

+
{(�b − �)2 + �2}1=2
{(�b − 1

3 )
2 + 1

9}1=2
v4‖

= (1− 3�)(1− x12)v1‖ + (1− 3�)x12v2‖ + 3�v4‖ (16)

where v1‖, v
2
‖ and v3‖ are the interpolated parallel components of the velocities v1, v2 and v3 at

(�; �) in !1, !2 and !3, respectively, which are described using the unit vectors as follows:

v1‖= v1 · e23‖ ; v2‖= v2 · e31‖ ; v3‖= v3 · e12‖ (17)

with

e23‖ =
�x23

‖�x23‖ ; e31‖ =
�x31

‖�x31‖ ; e12‖ =
�x12

‖�x12‖ (18)

Remark 1
In the original FCBI technique proposed for quadrilateral elements [6], the �ow-condition-
based interpolations were constructed using the �ow conditions along opposing element sides,
with an interpolation over the element. The two sets of opposing element sides were used.
However, in the formulation of triangular elements, the �ow conditions along each of three
element sides need to be considered in an equal manner to reach an isotropic element. This
isotropy and in addition a rational scheme for good predictive capability are achieved by
decomposing the velocity vector into the parallel and perpendicular components to each ele-
ment side and using di�erent trial functions for the components (see Section 3.2 for results
obtained when compared to using the same �ow-condition-based interpolations for parallel
and perpendicular velocity components). Notice that the element Reynolds number de�ned in
Equation (12) can be rewritten in the following form:

Ree12 = Re�v12 ·�x12

= Re �v‖12‖�x12‖

= Re
v1‖ + v2‖

2
‖�x12‖ (19)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849–875
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Since the parallel components of velocities to the side 1-2, which are de�ned at the nodes 1
and 2, are used, the advected velocity should also be parallel to the side. Hence, in the scheme
proposed in this paper, the perpendicular component of velocity is interpolated linearly as the
element Reynolds number is considered to be in�nitesimal due to �x12 · e12⊥=0 where e12⊥
is the unit vector perpendicular to the side 1-2.

Remark 2
In the Cartesian co-ordinate systems, the velocity in the domain !1 and its components are
written as follows:

v1 = v1‖e
23
‖ + v1⊥e

23
⊥

= v1xex + v1yey (20)

v1x = v1‖(e
23
‖ )x + v1⊥(e

23
⊥ )x

= (3�+ 3�− 2)[(1− x23){(e23‖ )x}2 + (1− �a){(e23⊥ )x}2]v2x

+(3�+ 3�− 2)[(1− x23)(e23‖ )x(e
23
‖ )y + (1− �a)(e23⊥ )x(e

23
⊥ )y]v2y

+(3�+ 3�− 2)[x23{(e23‖ )x}2 + �a{(e23⊥ )x}2]v3x

+(3�+ 3�− 2)[x23(e23‖ )x(e
23
‖ )y + �a(e23⊥ )x(e

23
⊥ )y]v3y

+3(1− �− �)v4x

= �1xv2x + �2xv2y + �3xv3x + �4xv3y + �5xv4x (21)

v1y = v1‖(e
23
‖ )y + v1⊥(e

23
⊥ )y

= (3�+ 3�− 2)[(1− x23)(e23‖ )x(e
23
‖ )y + (1− �a)(e23⊥ )x(e

23
⊥ )y]v2x

+(3�+ 3�− 2)[(1− x23){(e23‖ )y}2 + (1− �a){(e23⊥ )y}2]v2y

+(3�+ 3�− 2)[x23(e23‖ )x(e
23
‖ )y + �a(e23⊥ )x(e

23
⊥ )y]v3x

+(3�+ 3�− 2)[x23{(e23‖ )y}2 + �a{(e23⊥ )y}2]v3y
+3(1− �− �)v4y

= �1yv2x + �2yv2y + �3yv3x + �4yv3y + �5yv4y (22)

with

e23⊥ = ex × ey × e23‖

(e23‖ )x = e23‖ · ex; (e23‖ )y = e23‖ · ey
(e23⊥ )x = e23⊥ · ex; (e23⊥ )y = e23⊥ · ey

(23)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849–875
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where ex and ey are the unit vectors in the x and y directions, respectively. The velocity
components v2x , v

2
y, v

3
x and v3y can also be obtained in a similar way. Note that the requirement

	hvi =1, i.e. 	�ix =	�iy =1 in Equations (21) and (22), is still satis�ed since (e23‖ )x =(e23⊥ )y
and (e23‖ )y =−(e23⊥ )x. In addition, it is readily con�rmed from Equations (21) and (22) that
v1x and v1y are independent of the directions of e23‖ and e23⊥ as long as these unit vectors
are, respectively, parallel and perpendicular to the side 2-3. The same holds for the other
components.

3. NUMERICAL EXAMPLES

In this section, the performance of the new FCBI method is evaluated using some test prob-
lems. First, we apply the proposed scheme to the solution of an advection–di�usion problem
for which the exact analytical solution exists. Then we solve two Navier–Stokes �ow prob-
lems: a lid-driven �ow in a square cavity and in a triangular cavity. The full Newton–Raphson
method is used to solve the nonlinear equations with the convergence criteria max(Rv)610−6

and max(Rp)610−6 where Rv = ‖�v‖=‖v‖, Rp = |�p|=|p|. To reach the solutions for higher
Reynolds numbers, we use the converged solution of the lower Reynolds number case as
initial condition.

3.1. Solution of an advection–di�usion temperature problem between parallel plates

We include the solution of this problem in order to compare our calculated results with an
analytical solution. Figure 4 shows the analytical model of the temperature problem considered
with the boundary conditions and the mesh of 30 × 30 × 2 elements used in this study

x 

0 1

� (x,0.5)=0

�(0,y)=cos �y

�(x,−0.5)=0

�(1,y)=0

1v

-0.5 

0.5 

y 

(a) (b)

=

Figure 4. The �ow problem between parallel plates and the mesh used: (a) problem
de�nition; and (b) regular triangular mesh.
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θ θ

θ

Figure 5. Comparison of temperature values on the centre line: (a) Pe=10;
(b) Pe=100; and (c) Pe=1000.

(see also Reference [7]). When a unit velocity is prescribed in the x direction over the whole
domain, the exact steady-state solution for the temperature � is

�(x; y)=
cos�y
ea − eb

(ea+bx − eb+ax) (24)

with

a= 1
2(Pe+

√
Pe2 + 4�2); b= 1

2(Pe −
√
Pe2 + 4�2) (25)

where Pe is the P
eclet number.
Figures 5 and 6 show the comparison of temperature values on the centre line and on

vertical lines through the channel for Pe=10; 100 and 1000. Although the calculated values
deviate slightly from the exact data near the right boundary for Pe=100 and 1000, good
agreement with the exact solutions can be seen in all cases.

3.2. Solution of driven �ow in a square cavity

The capability of the scheme for Navier–Stokes �ow problems is next assessed by solving the
lid-driven �ow problem in a square cavity. This problem is widely used as a benchmark to

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849–875
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Figure 6. Comparison of temperature pro�les on vertical lines:
(a) Pe=10; (b) Pe=100; and (c) Pe=1000.

evaluate developed numerical schemes. We compare our numerical results with the solutions
of Ghia et al. [11] which are regarded as accurate.
Figures 7(a) and (b) show the geometry of the square cavity with the co-ordinate system

and the nomenclature used for the centres and representative lengths of the vortices, respec-
tively. The no-slip boundary condition is imposed on the left, lower and right boundaries,
while a unit velocity is prescribed on the upper boundary including the corners. In addition,
zero pressure is prescribed at the lower left corner. Three types of regular meshes and an
irregular mesh are used in the analysis for the �uid �ow up to the Reynolds number 10 000.
Figures 8(a)–(c) show the regular meshes including 40× 40× 2 elements, which are named
Meshes
1–3, respectively, and Figure 8(d) shows the irregular mesh named Mesh 4 that consists
of 20×20×2 elements. In Meshes 1–3, the grid points are distributed �ner near the boundary
according to the following equations:

x(i) =
e(2�=N )(i−1) − 1
2(e� − 1)

L
(
16i6

N
2
+ 1
)

(26)
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Figure 7. Square-cavity �ow problem: (a) problem de�nition (−16r; s61); and (b) nomen-
clature (taken from Reference [11]).

x(i) =
{
1− e(2�=N )(N+1−i) − 1

2(e� − 1)

}
L
(
N
2
+ 16i6N + 1

)
(27)

where N is the number of elements on a side, L is the length of the side, i is the node
number and � represents the parameter for unequal division. The value of � is �xed at 2 for
the three meshes.
First, the �uid �ow for Re=10000 is calculated using Mesh 1, and the obtained velocity

pro�les along the centre lines are shown in Figure 9. For the display of the results, we use
the r; s co-ordinate systems along the centre lines (−16r; s61) de�ned in Figure 7(a). As an
experiment, we also show the solution obtained if the same �ow-condition-based interpolations
are used for the parallel and perpendicular components of velocity on the element sides.
Although for this high Reynolds number a �ner mesh is necessary to reach agreement with the
result of Ghia et al. [11] (see below), the proposed approach of using di�erent interpolations
for the parallel and perpendicular components of velocity is more e�ective, see also Remark 1.
The dependence of solutions on the meshes used is evaluated in Figure 10, for Meshes 1–3.

The obtained results with the three meshes for Re=1000 are close to each other in velocity
pro�les along the centre lines and agree reasonably well with those of Ghia et al. [11].
The results obtained using the unstructured grid, Mesh 4, are given in Figure 11 for the

case Re=1000. Reasonable results are obtained using this coarse and distorted mesh, which
indicates the robustness of the FCBI scheme.
Figure 12 shows the comparison of our results with those of Ghia et al. [11] for the cases

Re=5000 and 10 000. In order to obtain more accurate results for these high Reynolds number
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Figure 8. (a) Mesh 1; (b) Mesh 2; (c) Mesh 3; and (d) Mesh 4.

�ows, we use a mesh based on the element distribution of Mesh 1 but with the number of
elements increased to 160× 160× 2. The velocity pro�les along the centre lines are in good
agreement with those reported by Ghia et al. [11].
Figures 13 and 14 show the streamline patterns and vorticity contours, respectively, obtained

with the 160 × 160 × 2 mesh for Re=1000; 5000 and 10 000. The vorticity is de�ned as
!=[(@vy=@x) − (@vx=@y)], and the contours are drawn at intervals of �!=1:0 for a range
of −10:06!63:0. As the Reynolds number increases, the vorticity in the primary vortex
becomes almost constant due to the near-linearity of the velocity pro�les, see Figure 12,
whereas the vorticity changes signi�cantly near the boundary.
A comparison of some characteristic values with the results of Ghia et al. [11] for

Re=10000 is listed in Table IV using the nomenclature in Figure 7(b). The vortex cen-
tres and the representative lengths corresponding to the velocity pro�le in Figure 12(b) are in
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Figure 9. Comparison of vertical and horizontal velocity pro�les along the centre lines obtained with
two di�erent types of interpolations for Re=10 000.
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Figure 10. Comparison of vertical and horizontal velocity pro�les along the centre lines obtained with
three di�erent meshes for Re=1000.
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Figure 11. Solutions in Mesh 4 for Re=1000: (a) velocity distribution; and (b) comparison of vertical
and horizontal velocity pro�les along the centre lines.
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Figure 12. Comparison of vertical and horizontal velocity pro�les along the centre lines: (a) solution
for Re=5000; and (b) solution for Re=10 000.

good agreement with those reported by Ghia et al. [11] in which a 257× 257 mesh is used.
Note that the smallest secondary vortex in the bottom right corner is captured with fewer
elements per side than those in the mesh used by Ghia et al.
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Figure 13. Streamline patterns: (a) solution for Re=1000; (b) solution for Re=5000;
and (c) solution for Re=10 000.

3.3. Solution of driven �ow in a triangular cavity

As a second �uid �ow example, we consider the driven �ow in an equilateral triangular cavity.
For this problem solution, triangular grids are quite natural to use. Although triangular-cavity
�ows have been studied by some researchers [12,13], the �ows considered were of rather small
Reynolds numbers. Here we solve small and large Reynolds number �ows; the maximum
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Figure 14. Vorticity contours: (a) solution for Re=1000; (b) solution for Re=5000;
and (c) solution for Re=10 000.

Reynolds number is 10 times larger than that reported by Ribbens et al. [12] in the same
analytical model.
Figures 15(a) and (b) show the geometry of the triangular cavity with the co-ordinate

system and the nomenclature for the vortices. As in the square-cavity �ow problem, the no-
slip boundary condition is imposed on the left and right boundaries, while a unit velocity
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Table IV. Comparison of characteristic values for Re=10 000.

Parameter FCBI Ghia et al. [11]

(xC; yC) (0:5127; 0:5291) (0:5117; 0:5333)
(xTL1; yTL1) (0:0682; 0:9116) (0:0703; 0:9141)
(xBL1; yBL1) (0:0530; 0:1732) (0:0586; 0:1641)
(xBL2; yBL2) (0:0305; 0:0372) (0:0156; 0:0195)
(xBR1; yBR1) (0:7777; 0:0581) (0:7656; 0:0586)
(xBR2; yBR2) (0:9326; 0:0763) (0:9336; 0:0625)
(xBR3; yBR3) (0:9958; 0:0043) (0:9961; 0:0039)
HTL1 0.1537 0.1589
VTL1 0.3241 0.3203
HBL1 0.3455 0.3438
VBL1 0.2857 0.2891
HBL2 0.0685 0.0352
VBL2 0.0896 0.0441
HBR1 0.3730 0.3906
VBR1 0.4455 0.4492
HBR2 0.1699 0.1706
VBR2 0.1576 0.1367
HBR3 0.0089 0.0039
VBR3 0.0092 0.0039
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Figure 15. Triangular-cavity �ow problem: (a) problem de�nition (−16r; s61); and (b) nomenclature.

is prescribed on the top boundary. At the bottom corner, the pressure is �xed at zero. The
calculation is conducted using two types of regular meshes named Mesh 1 and Mesh 2, for
which the element patterns are, respectively, shown in Figures 16(a) and (b), and consist of
l(l + 1) and l2=2 elements, where l is the number of elements along the top wall. In this
analysis, 44 310 elements (l=210) for Mesh 1 and 45 000 elements (l=300) for Mesh 2 are
used up to the Reynolds number 5000.
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(a) (b)

Figure 16. (a) Mesh 1; and (b) Mesh 2.
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Figure 17. Vertical and horizontal velocity pro�les along the centre line (x=0) and the
horizontal line (y=−1) obtained with two di�erent meshes: (a) solution for Re=100;

(b) solution for Re=500; and (c) solution for Re=5000.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:849–875



 
 

 
 

 
 

 
 

 
 

 
 

  RET
RACTE

D A
ND R

EP
LA

CED
 

  
FLOW-CONDITION-BASED INTERPOLATION FINITE ELEMENT PROCEDURE 869

Table V. Velocity values in the x direction along the centre line (x=0) in Mesh 1.

Re

Grid pt. no. y 100 200 500 1000 2000 3500 5000

211 0.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
207 −0:0571 0.81766 0.78999 0.73838 0.69877 0.66698 0.65422 0.65324
206 −0:0714 0.77171 0.73771 0.67965 0.64323 0.62494 0.62693 0.63440
205 −0:0857 0.72676 0.68813 0.62977 0.60396 0.60359 0.61767 0.62950
204 −0:1000 0.68320 0.64201 0.58927 0.57817 0.59334 0.61342 0.62599
180 −0:4429 0.16395 0.23983 0.28014 0.29736 0.31156 0.32091 0.32664
150 −0:8714 −0:16653 −0:10758 −0:05682 −0:03738 −0:02639 −0:02100 −0:01853
128 −1:1857 −0:29476 −0:33718 −0:26938 −0:25167 −0:24414 −0:24211 −0:24228
119 −1:3143 −0:27349 −0:37775 −0:35935 −0:33325 −0:32717 −0:32540 −0:32601
106 −1:5000 −0:18897 −0:29791 −0:45972 −0:46283 −0:44226 −0:43947 −0:44103
100 −1:5857 −0:14445 −0:22425 −0:41095 −0:50351 −0:50762 −0:49468 −0:49248
96 −1:6429 −0:11669 −0:17469 −0:33494 −0:46858 −0:53285 −0:53940 −0:53784
94 −1:6714 −0:10376 −0:15138 −0:28993 −0:42548 −0:51846 −0:54890 −0:55647
93 −1:6857 −0:09758 −0:14028 −0:26698 −0:39835 −0:50133 −0:54482 −0:55919
75 −1:9429 −0:02046 −0:01231 −0:01293 −0:01328 −0:00365 0.05945 0.07701
74 −1:9571 −0:01798 −0:00880 −0:00764 −0:00778 0.00234 0.05981 0.07563
63 −2:1143 −0:00032 0.01304 0.02439 0.02956 0.04331 0.01392 0.01073
58 −2:1857 0.00312 0.01543 0.02737 0.03362 0.03606 0.00303 0.00208
57 −2:2000 0.00355 0.01553 0.02732 0.03342 0.03324 0.00153 0.00054
50 −2:3000 0.00481 0.01371 0.02277 0.02546 0.01252 −0:00605 −0:00928
1 −3:0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table VI. Velocity values in the y direction along the horizontal line (y=−1:0) in Mesh 2.

Re

Grid pt. no. x 100 200 500 1000 2000 3500 5000

201 1.1547 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
195 1.0854 −0:14663 −0:20538 −0:33354 −0:45622 −0:55547 −0:60292 −0:61850
193 1.0623 −0:18510 −0:25872 −0:40554 −0:51876 −0:57957 −0:58979 −0:58657
190 1.0277 −0:23363 −0:32360 −0:47331 −0:54549 −0:54712 −0:52833 −0:52041
186 0.9815 −0:28188 −0:38138 −0:49887 −0:50832 −0:47690 −0:46718 −0:47034
180 0.9122 −0:32187 −0:41260 −0:45508 −0:42435 −0:41400 −0:42254 −0:42970
175 0.8545 −0:33011 −0:40093 −0:39707 −0:37604 −0:38205 −0:39068 −0:39628
101 0.0000 0.10458 0.09033 0.05136 0.04008 0.03387 0.03207 0.03184
60 −0:4734 0.18995 0.26513 0.28742 0.26286 0.25367 0.25191 0.25307
58 −0:4965 0.18981 0.26566 0.29968 0.27459 0.26479 0.26294 0.26407
42 −0:6813 0.17807 0.23822 0.35731 0.37510 0.35809 0.35375 0.35480
33 −0:7852 0.16183 0.20468 0.32956 0.40430 0.41568 0.41038 0.40969
27 −0:8545 0.14537 0.17678 0.28510 0.38345 0.43522 0.44616 0.44862
24 −0:8891 0.13501 0.16088 0.25700 0.35794 0.42878 0.45412 0.46214
22 −0:9122 0.12723 0.14946 0.23645 0.33563 0.41633 0.45197 0.46503
1 −1:1547 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Figure 18. Streamline patterns in Mesh 1: (a) solution for Re=100; (b) solution for
Re=500; and (c) solution for Re=5000.

Figure 17 shows the velocity pro�les in the x direction along the centre line and the y
direction along the horizontal line at y=−1 in the cavity obtained with Meshes 1 and 2 for
the cases Re=100; 500 and 5000. For the display of the results, we use in this �gure the
r; s co-ordinate systems (−16r; s61) de�ned in Figure 15(a). As in the square-cavity �ow
problem, the nearly linear variation of the velocity and the kinks near y=0 on the centre line
and x= 2√

3
on the horizontal line are observed for the case Re=5000. Since the solutions in

Meshes 1 and 2 are almost the same for these Reynolds numbers, the obtained results are not
sensitive to the meshes used.
As demonstrated in Section 3.2, the present scheme provides not only stable results even

with distorted grids but also accurate results, with the accuracy of course dependent on the
�neness of the mesh. Hence, we deem it useful to give more details of our results and we
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Figure 19. Vorticity contours in Mesh 1: (a) solution for Re=100; (b) solution for
Re=500; and (c) solution for Re=5000.

list some calculated values in Tables V and VI, in which local maxima and minima are
underlined. Noting that the results for Meshes 1 and 2 are virtually the same, we show in
Tables V and VI, respectively, the x-velocity along the centre line obtained from Mesh 1 and
the y-velocity along the horizontal line at y=−1 from Mesh 2. Showing the results this way,
we have more data points than if the results were employed from one mesh only.
Figures 18 and 19 show the streamline patterns and vorticity contours, respectively, obtained

with Mesh 1 for Re=100; 500 and 5000. In Figure 18, we see that some vortices appear
around the primary vortex, and their number increases as the Reynolds number increases.
The vorticity contours are drawn at intervals of �!=0:5 for a range of −5:06!65:0. As
in the square-cavity �ow, the vorticity in the primary vortex is approximately constant for
Re=5000, while the gradient of vorticity becomes large between the vortices and near the
geometric boundary.
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Figure 20. Variation of the vortex centre positions in Mesh 1: (a) (xC1; yC1); (b) (xC2; yC2);
(c) (xC3; yC3); (d) (xC4; yC4); and (e) (xC5; yC5).
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The locations of the centres of the vortices according to the nomenclature in Figure 15(b)
are listed in Table VII. Among them, the locations in the primary vortex can be compared
with the results of Ribbens et al. [12]. Although the present results agree well with those
of Ribbens et al. [12] for the cases Re=100 and 200, we obtained somewhat di�erent data
when Re=500. To study our results further we plot the calculated centre position of the
primary vortex as a function of the Reynolds number in Figure 20(a). This position changes
smoothly and according to the development of the �ow �eld; hence our results for Re=500
are deemed accurate.
In Figure 20(a), as in the square-cavity �ow problem, the centre of the primary vortex

moves toward the geometric centre of the cavity as the Reynolds number increases. On the
contrary, the secondary eddies under the primary vortex �rst appear around the cavity centre
and then move right or left with the increase in the Reynolds number as shown in Figures
20(b), (c) and (e). This �gure also implies that more eddies will appear near the stagnant
corner at higher Reynolds numbers; but a �ner mesh need to be used to capture those tiny
eddies.

4. CONCLUSIONS

In this paper we presented an FCBI scheme for use with triangular grids in the solution of
the Navier–Stokes equations at low and high Reynolds numbers. The emphasis in the FCBI
procedure is on stability and reasonable accuracy even when rather coarse meshes are used.
In the case of triangular discretizations, we also want that property to hold when completely
unstructured meshes are employed. This is di�cult to achieve, but a reasonable research
aim. The scheme presented in the paper is spatially isotropic (which is important for general
applications) and showed good stability and accuracy in the test problems solved. Some
detailed results are given for the �ow �elds in a driven square-cavity problem and in a driven
triangular-cavity problem.
The scheme was presented and tested for two-dimensional solutions, but in principle the

given procedure can also directly be developed for three-dimensional analyses. Of course,
further studies of the scheme, including the numerical e�ectiveness, for two-dimensional so-
lutions are needed. These studies might also result in improvements of the procedure, and for
three-dimensional solutions, the scheme needs to be still implemented, thoroughly tested and
analysed. Finally, a mathematical analysis of the given scheme would be very valuable.
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